
Vid - Streamer and
Database Manager

...A peer to peer Video Streaming with a Distributed
Database using MySQL and Firebase

Course Project for Database Systems
and Computer Networks

Trimester 2 (2020-21)

Submitted to :

Dr. Romi Banerjee and Dr. Ravi Bhandari

Submitted by:

Aditya Kumar Devin Garg Kartik Vyas

[B18CSE002] [B18CSE011] [B18CSE020]

2

Contents
1 Introduction 3

1.1 Motivation 3

2 Problem Description 4

3 Related work in the area 4

4 Background 5
4.1 Sockets 5
4.2 MySQL Database 6
4.3 Google Firebase Database 6

5 Solution 7
5.1 Audio: Recording and Sending 7
5.2 Video: Recording and Sending 8

5.2.1 Points of Learning and Hiccups 8
5.3 Storing merged Audio and Video in Database 9
5.4 MySQL Centralised Database 9

5.4.1 Points of Learning and Hiccups in this Approach 11
5.5 Google Firebase Database 11

5.5.1 Points of Learning and Hiccups in this Approach 11
5.6 MySQL Distributed Database 12

5.6.1 Points of Learning and Hiccups in this Approach 15

6 Project Details 15
6.1 Codebase Link 15
6.2 Demo Video Link 15
6.3 Snapshots of the Demo 16

7 Future Prospects 18

8 References 18

3

1 Introduction

Videos whether in the forms of movies, songs, informative videos, online

classes, or any entertainment videos play a crucial part in the daily lives of

a large group of the population. There has been a huge transformation in

the mode of teaching especially in the past year because of Covid-19.

Most of the classes are now being held online through different platforms.

Now, there exist platforms such as Google Meet and Google Classroom,

but these require the abundant need of data and the connection is not

smooth unless Internet connectivity is very good. Thus, we developed our

own system for real-life wide use cases. These cases include streaming a

fun video among your friends, or an instructor taking a class and streaming

the same to the students, or common file transfers of all kinds of files like

videos, lecture notes, books, movies, etc. To implement a solution in this

project, we have explored concepts around python sockets and different

types of databases. The aim was to create an application that can be used

for streaming videos via screen sharing across devices connected to a

common network; the streaming video could be saved at the endpoints as

well. Along with this, these videos would be saved in a backup folder

which could be later accessed by the connected clients and transferred

accordingly; for this, we have used MySQL[both, centralized and

distributed databases] and an online Google Firebase database.

1.1 Motivation

As mentioned above, the main motivation behind this project was the need

for a platform that can be used for video streaming and people can retrieve

this data from the database later when needed. When coupled with the

4

content of this course, it seemed like a perfect overlap between a

use-case and the concepts we were going to learn about in the Database

Systems course. This application would ensure that over a network, all the

connected endpoints can view the streamed video streamed by one server,

and this video compiled with audio can be screen shared. These compiled

audio and video files would be later saved in a backup for future sharing

between these endpoints. The thing that was the most interesting in this

project was how many problems it could solve simultaneously and the

tech stack that we have used was quite exciting to learn and implement.

2 Problem Description

Briefly, it can be described as streaming of video via screen sharing to

different devices connected to the same network and saving the streaming

video in the database at the end of the stream so that it can be distributed

to other clients anytime later. Considering the technical aspects, there

would be one main server that will be streaming to multiple clients that

would be connected to it and all these clients will have access to the

saved video. Also, we will have a database backup folder associated with

each user in their memory that can be used to save the recorded video

depending upon the user’s choice. Also, any user at any time can request

data from other users through the help of sockets communication

facilitated by the database.

3 Related work in the area
This problem has wide implications and usage in real life. Its importance is
well understood in the market and there are many platforms like google
Meet, Zoom in terms of video streaming and Google Drive, OneDrive in

5

terms of data sharing. Adding functionalities like screen sharing, saving
recorded video over different devices connected in a network, and then
backing up the database by MySQL and making it distributed and then
alternatively using databases such as Firebase makes the project
interesting and exciting. The apps that are currently available in the app
stores are not open source and contributing to open source is motivating
and with time, it will result in something that will be of usage for the
masses.

The course content forms the perfect base for understanding the
fundamentals of the project and the course helps in holding a grip and
better understanding of concepts used in the project such as the
connection of devices, their interaction by communication and file transfer,
and then performing tasks in synchronization and maintaining a database
and selectively performing file transfer. By using sockets and database
tools fundamentally, the users do not need an internet connection to
stream video and transfer the data. The work is highly scalable and is of
ample use even in our own Institute where professors can stream the
lectures from the quarters and students can attend classes from their
rooms and further access the recorded lectures, just by connecting to the
common network, an Internet connection is not required as such.

4 Background
Before diving into the details of our implementation in this project, let’s

briefly take a look at what sockets, MySQL database, and Google Firebase

database are and how they function.

4.1 Sockets

Simply put, a socket is an endpoint communication instance for a node that

is present in a network. In general, sockets include information about the

transmission protocol in use, the IP address, and the port number. So, how

6

that works is - whenever a node acts as a server, it opens a socket and

starts listening for connection requests. A client on the other hand is

aware of the IP address of the server and the port on which the socket is

open. With this information, the client is able to try to connect with the

server, which, given some constraints are satisfied which may include

authentication, then accepts the connection request, and then a connection

is established between the client and the server.

4.2 MySQL Database

MySQL is an open-source relational database management system

(RDBMS). A relational database organizes data into one or more data

tables in which data types may be related to each other; these relations

help structure the data. SQL is a language programmers use to create,

modify and extract data from the relational database, as well as control

user access to the database. In addition to relational databases and SQL,

an RDBMS like MySQL works with an operating system to implement a

relational database in a computer's storage system, manages users, allows

for network access, and facilitates testing database integrity and creation

of backups. MySQL has stand-alone clients that allow users to interact

directly with a MySQL database using SQL, but more often MySQL is used

with other programs to implement applications that need relational

database capability.

4.3 Google Firebase Database

Firebase is a platform developed by Google for creating mobile and web

applications. Firebase is a Backend-as-a-Service (Baas). It provides

developers with a variety of tools and services to help them develop

7

quality apps, grow their user base, and earn profit. It is built on Google's

infrastructure. Firebase is categorized as a NoSQL database program,

which stores data in JSON-like documents.

5 Solution

This project can be broadly divided into six parts

5.1 Audio: Recording and Sending

We are recording audio from the speaker of the streaming device. We start

two different threads. One for recording the speaker audio on the

server-side, and the second thread to send speaker recording frame by

frame over the socket. Similarly, we have two different threads on the

client-side. One for receiving the speaker audio, and the second thread to

play audio of the speaker. The audio stream is received on the client-side

frame by frame and is processed further. The audio frames are appended

to a file one by one. Both of the processes take place simultaneously. We

are using the pyaudio and wave library for all of the above processes. At

the end of the stream, the audio file is saved to the device and is merged

with the video file.

8

5.2 Video: Recording and Sending

We are streaming video via screen sharing. We start with two different

threads on the server-side. One for recording the video on the server-side,

the second thread to send video frame by frame over the socket. Frames

are compressed before being sent to the client. We are using Zlib and

pickle library for compressing. Similarly, we have a separate thread for

receiving the video stream on the client-side. We receive the video stream

on the client-side frame by frame and it is processed further. Frames are

decompressed and played and are appended to a file one by one. We are

using OpenCV, mss, and pygame library for the above purposes. One

caveat in the process is knowing the rate of the frames being transmitted.

At the client’s end (and at the server’s end too), when a video stream is to

be created the FPS at which the frames were recorded is needed. Hence,

we ran a few tests and found that we could achieve a frame-rate of around

10 FPS in the best case.

5.2.1 Points of Learning and Hiccups

The major learning point in this segment (i.e. of video recording and

streaming) was that of managing the corresponding frame rate. Originally,

we were working with a frame rate of 30 fps; however, that was a mistake.

If the actual frame rate of recording is not taken into account, the final

video prepared is a lot more hastened. Therefore, we tried to find out at

what rate the actual frame-recording was taking place and employed that

for properly creating the final video stream.

9

5.3 Storing merged Audio and Video in Database

Once the user enters the stop command on the server-side, the streaming

stops, and both audio and files and the video file are merged together. We

are using the FFmpeg tool to mux the recorded audios and then to merge

with the video together. Once the stream ends the recorded video is saved

in the node for later use.

5.4 MySQL Centralised Database

The server would keep on listening for clients. The clients would connect

to the server and then further enter the password; after proper

authentication, the client can continue for further communication. Each

client would update the database with all the files stored in their backup

folder and then further each client would be able to see all the files that

are available over the network. The database would consist of a single

table having three attributes namely, file name, IP Address, and port

number. Afterward, the client can get connected to the client that has the

requested file via a socket and further file transfer can be facilitated. The

database would be updated thereon and any client can join or leave the

server at any point in time. The file transfer is very fast in nature as we are

using direct peer to peer file transfer, for a transfer of a file of 1.1 GB, it

took roughly 35 seconds. Below is the UML activity diagram for further

ease in understanding the entire workflow of this approach :

10

11

5.4.1 Points of Learning and Hiccups in this Approach

The main thing to look out for was the functioning of the sockets and

database individually and together as well. This led us to sharpen our

concepts as we faced multiple problems while trying to implement the

whole application.

Though any server that has MySQL workbench installed can become the

server, but while the process is ongoing in case the server connection is

interrupted, then the whole database data is lost, thus there is a chance of

a single point of failure. Thus, we need to look for something, from where

the database is not lost as soon as any endpoint connection over the

network is interrupted.

5.5 Google Firebase Database

The socket communication and file transferring would be facilitated the

same as above and for the database part instead of using a local database,

we are using the Firebase database to remove the possibility of a single

point of failure. Here, the database would be stored safely and there is no

chance of database loss.

5.5.1 Points of Learning and Hiccups in this Approach

Learning and implementing an online database service like Firebase was

really a nice experience and we got to see how to perform queries over

such platforms and before that how to integrate online databases in our

systems.

12

The only issue that exists is that for this we need an Internet

connection, however since we have ensured that the data is just in form of

a table, even loose connectivity would work in this approach. Next, we will

look into how we integrated the MySQL database into a distributed

database system.

5.6 MySQL Distributed Database

In this approach, we followed an approach of how the server and clients

would structure the overall application. There would be multiple servers

referred to as master servers and clients. All the master nodes will have a

copy of the entire database, thus ensuring the smooth functioning of the

application even when one connection of the server is interrupted. Once a

master node has joined the network, it would retrieve the database from

the already active master nodes. Further, whenever a client endpoint

receives a new file, the database would be updated across all the master

servers via a socket communication. Each client would be connected to

each master node and the master nodes would be connected among

themselves as well. Masters and clients have been designated specific

port numbers in order to remove any unnecessary confusion and smooth

functioning of the application. Below is the UML activity diagram for server

and client sides for further ease in understanding the entire workflow of

this approach :

13

14

15

5.6.1 Points of Learning and Hiccups in this Approach

This approach was really complicated to implement as there are several

sockets and multiple datasets that are involved. We tried to make the data

consistent and reliable. The master servers and the clients interact with

each other through multiple socket connections hosted at specific ports;

we have used threading so that multiple processes can run concurrently.

6 Project Details

6.1 Codebase Link

https://github.com/garg-7/operation_overdrive

6.2 Demo Video Link

https://drive.google.com/drive/folders/1N7W310itR_toE0jzxt3ChLf0mQyir

q_y?usp=sharing

6.3 Snapshots of the Demo

https://github.com/garg-7/operation_overdrive
https://drive.google.com/drive/folders/1N7W310itR_toE0jzxt3ChLf0mQyirq_y?usp=sharing
https://drive.google.com/drive/folders/1N7W310itR_toE0jzxt3ChLf0mQyirq_y?usp=sharing

16

Video Streaming Server

Video Streaming Client

17

Database Backup Server

Database Backup Client

18

7 Future Prospects

The wide real-life application makes this project’s scalability pretty useful

which can lead to meaningful end products. Possible future work that can

be done is as follows

❖ Online Web Application with integrated chat

❖ Picture-in-picture webcam feed and screen share

❖ Adaptive FPS resolution of screen share at runtime

8 References

❖ https://medium.com/firebase-developers/what-is-firebase-the-compl

ete-story-abridged-bcc730c5f2c0

❖ https://dzone.com/articles/sql-query-optimization-and

❖ https://www.youtube.com/watch?v=HXV3zeQKqGY

❖ https://www.c-sharpcorner.com/blogs/creating-local-database-using

-microsoft-sql-server

❖ https://www.youtube.com/watch?v=1DhvKCjG2NE

❖ https://www.pygame.org/docs/

❖ https://people.csail.mit.edu/hubert/pyaudio/docs/

❖ https://stackoverflow.com/questions/48950962/screen-sharing-in-py

thon

❖ https://www.geeksforgeeks.org/saving-a-video-using-opencv/

❖ https://stackoverflow.com/questions/30988033/sending-live-video-fr

ame-over-network-in-python-opencv

https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0
https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0
https://dzone.com/articles/sql-query-optimization-and
https://www.youtube.com/watch?v=HXV3zeQKqGY
https://www.c-sharpcorner.com/blogs/creating-local-database-using-microsoft-sql-server
https://www.c-sharpcorner.com/blogs/creating-local-database-using-microsoft-sql-server
https://www.youtube.com/watch?v=1DhvKCjG2NE
https://www.pygame.org/docs/
https://people.csail.mit.edu/hubert/pyaudio/docs/
https://stackoverflow.com/questions/48950962/screen-sharing-in-python
https://stackoverflow.com/questions/48950962/screen-sharing-in-python
https://www.geeksforgeeks.org/saving-a-video-using-opencv/
https://stackoverflow.com/questions/30988033/sending-live-video-frame-over-network-in-python-opencv
https://stackoverflow.com/questions/30988033/sending-live-video-frame-over-network-in-python-opencv

