
Sync
...A Music Synchronizer

Course Project for CS311

Trimester 1 (2020-21)

Submitted to :

Dr. Ravi Bhandari

Submitted by:

Devin Garg Kartik Vyas

(B18CSE011) (B18CSE020)

2

Contents
1 Introduction 3

1.1 Motivation 3

2 Problem Description 3

3 Related work in the area 4

4 Solution 4
4.1 Sockets - the answer! 4
4.2 Our Project 5

4.2.1 Codeflow / Pseudo Code 6
4.2.2 Snapshots of the demo 6

4.2.2.1 Command Line Interface 6
4.2.2.2 Graphical User Interface 8

4.2.3 Hiccups in the process 12
4.2.4 Codebase Link 13

5 Contribution 13

6 Future Prospects 13

7 References 14

3

1 Introduction

Music forms an important part of the daily lives of a large group of the

population. When there is any cause for celebration whether it is an

after-hours work place scene or a students’ hostel, people can be in a

pickle if a good music system is not at hand. To improve upon such a

situation, in this project we have implemented the concept of sockets to

create an application that can be used for music synchronization across

devices connected to the same local network! We have used python

sockets as a means to establish a connection between devices that are

connected to the network.

1.1 Motivation

As mentioned above, the main motivation behind this project was the need

for a make-shift common music system. When coupled with the content of

this course, it seemed like a perfect overlap between a use-case and the

concepts we were going to learn about in communication and networking.

2 Problem Description

Briefly it can be described as playing a track over different devices in

synchronization to obtain surround sound effects. Considering the

technical aspects, there would be a network of devices and the clients

would send track suggestions to the server and then the server may or

may not have the track. In case, any of the clients has it, the track is

transferred to all the endpoints. The user then may play, pause, stop or

end the track player.

4

3 Related work in the area
This problem has wide implications and usage in real life. Its importance is
well understood in the market and there are some mobile apps as well
which now allow the functionality of synchronizing tracks. Though, this
area has only been explored in limited depth. Adding functionalities like
suggesting songs, song transfer makes the project interesting and exciting.
The apps that are currently available in the app stores are not open source
and contributing for open source is motivating and with time, it will result
in something that will be of usage for masses.

The course content forms the perfect base for understanding the
fundamentals of the project and the course helps in holding grip and
better understanding of concepts used in the project such as connection of
devices, their interaction by communication and file transfer and then
performing tasks in synchronization. By using sockets fundamentally, the
users do not need internet connection if the track is already available in
any of the devices. The work would be highly scalable.

4 Solution

Before diving into the details of our implementation in this project, let’s

briefly take a look at what sockets are and how they function.

4.1 Sockets - the answer!

Simply put, a socket is an endpoint communication instance for a node that

is present in a network. In general, sockets include information about the

transmission protocol in use, the IP address and the port number. So, how

that works is - whenever a node acts as a server, it opens a socket and

starts listening for connection requests. A client on the other hand is

5

aware of the IP address of the server and the port on which the socket

is open. With this information, the client is able to try to connect with the

server, which, given some constraints are satisfied which may include

authentication, then accepts the connection request and then a connection

is established between the client and the server.

4.2 Our Project

In this project we have established a socket connection between several

laptop/PCs to facilitate synchronization of a particular sound track. Several

clients can get connected to the server and then they can suggest the

track that they wish should be played. This suggestion would be sent to

the server. Afterwards, once all the clients are connected and their track

suggestions are received; the server decides the track that is to be played.

In case, the server endpoint does not have the track, it checks if any client

has the same, in case they do the track is sent to the server (and if none of

the endpoints has the track, it obviously cannot be played). Once the

server has the track file, it checks if all the client endpoints have the track

or not, in case the track is not at any of the endpoints, the server transfers

the file to the respective client. Then the user may play, pause and stop

the player accordingly.

The project is implemented using the socket library of python. Pygame

library accounts for the track player and PyQt5 has been used extensively

for building the GUI of the program.

6

4.2.1 Codeflow / Pseudo Code

1. Server creates a socket connection
2. Server enters the number of client servers to be added
3. Clients enter the name of the server endpoint and join
4. Clients suggest tracks that they want to be played
5. Server receives the suggested tracks and does tracks selection
6. If track is not present in the server endpoint :

a. Check if the track is present in any client endpoint by running a
loop

i. If yes, transfer the song to the server endpoint
7. If the track still could not be obtained by the server :

a. Return that the track is not available on any of the clients
8. Check if the track is not present in any client endpoint by running a

loop :
a. If not present, transfer it to the concerned client endpoint from

the server endpoint.
9. Now every endpoint has the track and using pygame and by socket

communication the server endpoint can play, pause, stop, or end the
track player.

4.2.2 Snapshots of the demo
Following are the screenshots from the project. We have implemented the

project using the command line interface. Also, a GUI has been built (with

almost common functionality).

4.2.2.1 Command Line Interface

The command line interface has two components - client and server. The

working of both the components are shown below.

7

Server Endpoint :

8

Client Endpoint :

The first snip is of the server endpoint and it first shows the hostname and

then enters as the number of clients to be added. It then decides the track

to be played after receiving the suggestions and since the three clients do

not have the track, it is sent to all the three clients and then played. The

second snip is of the client endpoint, it enters the name of the host to

which connection is to be made. Then, it suggests a track and then it

receives the track from the server as it was not earlier present. Then, the

playback is started after receiving command from the server.

4.2.2.2 Graphical User Interface

The following page(s) show the GUI that is built using PyQt library of

python. The functionalities of each snip is mentioned right below them.

9

The first screen asks what the node wants to be - the server or a client

The first interface for the server endpoint, showing the details required by

the clients for connecting and the proceed button to go to the next

window where we pick the sound track to be played.

10

The first interface of the client endpoint where the client inputs the

server’s name and port where it is listening to establish a connection.

The user at the server node selects the track from the drop down

menu and then verifies if the track is present with every client or not. In

case not, the track is transferred to the clients that need it.

(Note: The songs listed in this drop down list are the ones that are

present with the server.)

11

The client interface which is shown after successful connection.

From here on out, the client window shows this message while the

music played on it is controlled by the server.

The final window at the server side which is the track player, it offers

utilities of play, pause, stop or end the player. One may also go back and

select some other song to play.

12

4.2.3 Hiccups in the process

As we began working, the major thing to look into was the working of

sockets and music playback. We turned to the inbuilt socket library that in

turn contacts the socket API of the OS. The understanding of how socket

commands work was a major point. Most of those being blocking - in the

sense that they freeze the python process until they go through with the

respective operation. Music playback was sorted with the help of the

pygame library.

The next major thing to look at was synchronization across devices. This

meant taking into consideration the lag that was introduced while sending

the command to play/pause/stop the music and the time it took to take the

respective action. To estimate what needed to be the delay to be

introduced at the server node, we employed the ping tool.

As shown in the above image, we found out the average delay in the case

of using a python socket which came out to be around 100ms. We

introduced this delay in the server node to keep the nodes in sync. Note

that this was under test for a specific case (though tested multiple times).

4.2.4 Codebase Link

https://github.com/vyaskartik20/SYNC

5 Contribution
Work Devin Kartik

https://github.com/vyaskartik20/SYNC

13

Socket Communication Major Minor

File Transfer Minor Major

Playback Minor Major

GUI Major Minor

6 Future Prospects

The wide real life application makes the project highly scalable which can

be extended to meaningful end products. Possible future work that can be

done :

❖ Mobile Interface

❖ Peer to peer file transfer

❖ Playing track that is available over web

❖ Track polling utility by the clients

❖ Authentication

❖ Including automatic pinging and delay setting

7 References

❖ Front page image - CC0 1.0 (Source)

❖ https://docs.python.org/3/library/socket.html

❖ https://realpython.com/python-sockets/

❖ https://docs.python.org/3/howto/sockets.html

❖ https://www.pygame.org/docs/ref/music.html

❖ Images in the GUI -

https://creazilla.com/nodes/16446-musical-notes-colorful-clipart
https://docs.python.org/3/library/socket.html
https://realpython.com/python-sockets/
https://docs.python.org/3/howto/sockets.html
https://www.pygame.org/docs/ref/music.html

14

➢ https://thenounproject.com/term/client/

➢ https://vectorified.com/mainframe-icon

https://thenounproject.com/term/client/
https://vectorified.com/mainframe-icon

