
Semantic Plagiarism Checker
on Handwritten Scripts

INDIAN INSTITUTE OF TECHNOLOGY JODHPUR
Trimester II Winter 2020

Guided By

Dr. Romi Banerjee

and

Dr. Debarati Bhunia Chakraborty

Submitted By :

Aditya Kumar Kartik Vyas
B18CSE002 B18CSE020

1

mailto:romibanerjee@iitj.ac.in
mailto:debarati@iitj.ac.in

2

Table of Contents

1 Overview 3

2 Motivation 4

3 Goals 5

4 Problem Statement 6

5 Datasets 7

6 Development Plans and Execution 10

7 Website Integration 30

8 User Guidelines 32

9 Limitations and Future Plans 33

10 Result 33

11 Techstack 33

12 Demo and Github Link 33

13 Conclusion 34

14 Acknowledgments 34

15 References 35

3

1 Overview
Letters, words, phrases, sentences, paragraphs, scripts, documents form a very
fundamental and crucial part of our lives. There is an abundant amount of
textual data and our life is deeply governed by how we perceive it. In the lives
of students, there are countless number of submissions that they make in the
format of quizzes, assignments, projects, exams, etc. It then falls upon the
duty of instructor to evaluate and grade all this large amount of data.

It is to be noted that just evaluation is not sufficient, there has to be a lot of
factors that needs to be looked into, such as the semantics of the text, whether
it is in the same context as to what is desired, whether it falls under entailment
or contradiction category with respect to the desired answer. Another crucial
aspect is whether or not the thoughts/ideas/work is original; that is, whether
the work is plagiarised or not. To account for that we must understand what
we define plagiarism as.

Plagiarism is the representation of someone else’s work or ideas as our own
work and it can be equal to a crime. Plagiarism is growing day by day. With a
huge set of information on the internet, one can easily get any information and
claim it as their original work and get away with plagiarism. This is not it, there
can be cases of plagiarism involved through cheating as well.

On another note, checking plagiarism/similarity using any pre-existing tool is
not feasible due to the format of submission. The format can be a pdf of
scanned images or a pdf of digital text or simply a text file; all these formats
needed to be handled individually and then brought down to a common
format.

Thus, there are a lot of open problems lying around in the world with no
apparent single solution for checking various kinds of plagiarism, semantic
similarity, textual entailment analysis and text overall analysis. We have
developed a solution that answers all these questions and this tool can aid the
instructors and students to improve the quality of education and this tool has
various real life applications in other fields as well.

4

2 Motivation
More and more number of Educational Institutes are now stressing upon the
importance of continuous evaluation. This directly impacts the number of
assessments to be done for various projects, quizzes, assignments and exams
in general. It becomes a time and resource intensive task for the instructors to
evaluate all the submissions with remarkable accuracy. Additionally, the
instructor also needs to keep a check whether any student has plagiarized
from the web or there is any case of intrinsic plagiarism among the students.
Then, how similar the actual submission of the student is with reference to
what is expected from the student.

There are tools available for such requirements but almost all of them are paid
and moreover, instructors need to run them one by one, which can be a pretty
difficult task in itself. Thus, we developed a one-stop solution for the entire
problem. Consider that there are n number of students submitting one
document each. Each of these documents would be checked against each other
for plagiarism and then each document would also be checked against all web
relevant searches for plagiarism. Moreover, every pair of the sentence would
be checked for how much semantic similarity is there between them and then
their textual entailment would also be done, denoting whether they fall under
the category of entailment, neutral or contradiction.

Additionally the format of all the submissions should be brought down to a
single format as a preprocessing step so data can be analysed further
accordingly. We worked upon how to convert PDFs both digital text and
handwritten text and then to convert them a .txt file with uniform digital text.

This would help the instructors in not just checking for plagiarism but actually
easy evaluation of the submissions, which would be a relative analysis and
even the whole grading can be automated according to the instructors’ use
case. The single thought of freeing the instructors’ precious time which can be
used in useful teaching and overall improving of the education experience
motivated us to pursue the project throughout the course of the project. It is to
be noted that it is not just for educational purposes, this tool can be used to

5

analyse already published and yet to be published research papers for proper
analysis of the topic and the research papers.

3 Goals
As outlined by the previous two sections, the goal is to develop a system that
helps in first bringing all the submissions in a single format and then consider
checking plagiarism on various scales and then doing semantic analysis by
predicting a similarity score and recognizing textual entailment.

We plan to do this with the help of diverse and deeply resourceful and
integrated Python libraries and building PyTorch and TensorFlow model Binary
Classification, Regression, and Multi-Class models. We have used several
datasets to validate the work and train the models. We thought of a fresh
approach and decided that instead of focusing on one type of feature
extraction/embeddings, we would form a list of arrays and then decide what
approach works the best for our work. The following are briefly the goals that
we focused on during the course of the project, we have finalised the best
techniques for the below.

❖ Convert all formats into single .txt format

➢ Convert Scanned handwritten documents pdf into digital text

➢ Convert digital pdf to .txt format

❖ Compute extent of online plagiarism

❖ Compute extent of plagiarism among documents [all pairs possible]

❖ Compute features that would aid in getting idea of similarity/plagiarism

➢ Cosine Similarity

➢ Cosine Trigram Similarity

➢ Jaccard Similarity

➢ Longest Common Subsequence

➢ Sequence Matcher

6

➢ Universal Sentence Encoder

➢ BERT Sentence Embeddings

➢ Word2Vec Spacy Sentence Embeddings

➢ Rabin Karp

➢ NLTK Phrase Tool

➢ NLTK Docism Took

➢ N-gram Containment Tool

❖ Compute extent of semantic similarity among documents [all pairs
possible]

❖ Recognizing textual entailment among documents [all pairs possible]

We have worked upon and successfully implemented the above mentioned
goals, details of which are later in the sections.

4 Problem Statement
We would be given a set of documents in varied formats such as pdf files of
scanned handwriting, pdf files of digital text and .txt files. The aim is to
analyse the set of documents thoroughly with the tools, techniques and
features as mentioned above in the Goals section to help out the instructor /
any body that wants to analyse a set of documents, research papers,
informative articles, etc. We would have the idea about web plagiarism,
plagiarism in between documents, similarity in between documents and
textual entailment analysis among all pairs possible among the documents.

7

5 Datasets
5.1 AI dataset
During Trisem1 2020-21 in Artificial Intelligence (CS323 course), CSE and
BSBE batch submitted class notes in two different formats, either handwritten
or digital format. These notes are a great dataset for our project as this is
real-world data. We floated a form to collect those notes from our fellow
batchmates. Around 35 students gave their notes along with the consent to
use their notes as a dataset. Each student made four submissions and on an
average, each submission was 2500 words long. This helped us in properly
analysing the semantics as every student explained the same concept in their
own words. We also gathered the data whether the students’ work was
penalized or not as a part of the coursework and then judged the accuracy of
out tools accordingly.

5.2 DBMS and ADA Notes
These notes were provided by Dr. Romi Banerjee which were written during
her B. Tech days and currently are used as reference notes by the students.

8

These notes are a great source of information in various different formats,
using different types of diagrams and notations. There is variation in the ink
colour, thus this gives us the variety to judge the accuracy of Microsoft API. We
converted the pdf into images, where one image has one page of the pdf, then
we extracted and recognized the text in each image using API call and this text
got saved into a .txt file, which we later converted into a pdf file. Thus, the
entire 80 pages notes were converted into a pdf file in digital text format.

5.3 MSRPC Dataset
This dataset[1] is provided by Microsoft and is known as Microsoft Research
Paraphrase Corpus. It consists of 5800 pairs of sentences. Along with a label
to indicate whether a pair of sentences captures a paraphrase/semantic
equivalence relationship or not. This is a binary classification measure of such
an equivalence.

5.4 SICK Dataset

It consists of 10,000 pairs of sentences along with a sentence relatedness
score and a label to indicate entailment relation between two sentences.
Sentence relatedness score is labeled on a 1 - 5 rating scale. While for
entailment relation the sentences are labeled in three different classes
“contradiction”, “entailment”, and “neutral”. The distribution of the dataset[2] for
sentence relatedness score is as follows, 923 pairs within the [1,2) range,
1373 pairs within the [2,3) range, 3872 pairs within the [3,4) range, and 3672
pairs within the [4,5] range. The distribution of the dataset for entailment
relation is as follows, the entailment annotation led to 5595 neutral pairs,
1424 contradiction pairs, and 2821 entailment pairs. This dataset is highly
beneficial for us as it gives a measure of semantic similarity on a continuous
scale and additionally, gives us the dataset to analyse whether two scripts are
related in terms of entailment or not. A complete analysis leads us to better
understanding and this can be used to judge students’ responses and possible
grade them.

5.5 STS Dataset

9

This dataset[3] considers the semantic similarity of nearly 8000 independent
pairs of texts and shares a precise similarity metric definition of assigning a
number between 1 to 5 to each pair denoting the level of similarity/entailment.
The dataset is inspired from different genres like news, forums, and captions;
which makes it diverse. We have used this to check how the model architecture
works on a different kind of data. This helped us in analysing and fine tuning,
thus improving the model and the overall accuracy.

5.6 University of Sheffield
This dataset[4] is provided by the University of Sheffield. 19 students
volunteered for making the dataset. There were five different questions related
to computer science. For source text, the answer to the question was taken
from Wikipedia. 19 other students gave their answers to respective questions
which resulted in 95 answers. In all, there were 100 documents of which 95
were answers provided by students and 5 were source documents to which
answers were compared for plagiarism.

There were four levels of plagiarism :

Near Copy: Participants were asked to answer the question by simply copying
from a relevant Wikipedia article.

Light Revision: Participants were asked to answer the question on the basis of
the Wikipedia article along with altering texts using some basic ways like
substituting phrases and words with synonyms.

Heavy Revision: Participants were asked to answer the question on the basis
of Wikipedia article but this time they were asked to alter the text heavily by
replacing phrases and words with synonyms, mixing sentences, or splitting
one sentence into many sentences:

Non Plagiarism: In this case participants were given lecture notes or sections
from the textbook and were asked to answer the questions after reading the
material.

This dataset represents the type of plagiarism practiced by students in
academic settings and has been of relevance for us to figure out the accuracy,

10

quality and usefulness, and use case of each feature that we have used to
compute the similarity score.

6 Development Plans and Execution
6.1 Converting Handwritten Scanned Documents
into Digital Text

6.1.1 Extracting images out of PDF
The pdf is divided into smaller chunks and then each chunk is processed
separately. RAM is flushed after processing of each chunk to increase speed.
Images are extracted from pdf chunks using pdf2image along with poppler
library.

6.1.2 Extracting text out of images using Microsoft API
Then the text is extracted from images using Microsoft API[5] and is being
appended to a text file. We get pretty good results but it needs further
improvements.

11

6.1.3 Improvement in the extracted text
The text obtained from API is further improved using different libraries like
textblob, Pyspellchecker, and Symspell library.

6.1.3.1 TextBlob Library :

It is based on Peter Norvig’s “How to Write a Spelling Corrector”. The code
generates two different sets of words for the incorrect word. The first set
contains the words that are generated by making only one edit in the incorrect
word while the other sets of words are generated by making two edits in the
incorrect word. These words are further narrowed down by checking their
existence in the dictionary. The final word to be replaced is chosen with the
help of probability. The probability of the candidate word appearing as a word
in English Text and the probability that given incorrect word would have been
typed when the author wanted to write the candidate word. A combination of
the above two probabilities is taken into consideration while choosing the
candidate word.

6.1.3.2 Pyspellchecker Library:
It is also based on Peter Norvig’s “How to Write a Spelling Corrector”. It uses
the Damerau Levenshtein distance algorithm to find permutations with an edit

12

distance of 2 from the original word. It then compares all the permutations
generated by insertions, deletions, replacements, and transpositions to known
words in a word frequency list. The words that are found more often in the
frequency list are more likely the correct words for replacing the current word.

6.1.3.2 Symspell Library :
The Symmetric Delete spelling correction algorithm algorithms[6] reduces the
complexity of edit candidate generation and dictionary lookup for a given
Damerau-Levenshtein distance. It is six orders of magnitude faster (than the
standard approach with deletes + transposes + replaces + inserts) and
language independent. Opposite to other algorithms, only deletes are
required, no transposes, replaces and inserts are required as transposes,
replaces and inserts of the input term are transformed into deletes of the
dictionary term. Replaces and inserts are expensive and language dependent:
e.g. Chinese has 70,000 Unicode Han characters!. The speed comes from the
inexpensive delete-only edit candidate generation and the pre-calculation. An
average 5 letter word has about 3 million possible spelling errors within a
maximum edit distance of 3, but SymSpell needs to generate only 25 deletes
to cover them all, both at pre-calculation and at lookup time.

The SymSpell algorithm exploits the fact that the edit distance between two
terms is symmetrical so we can combine both and meet in the middle, by
transforming the correct dictionary terms to erroneous strings, and
transforming the erroneous input term to the correct strings. Because adding a

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

13

char on the dictionary is equivalent to removing a char from the input string
and vice versa, we can on both sides restrict the transformation to deletes only.

Single word spelling correction

Lookup provides a very fast spelling correction of single words.
● A Verbosity parameter allows to control the number of returned results:

Top: Top suggestion with the highest term frequency of the suggestions
of smallest edit distance found.
Closest: All suggestions of smallest edit distance found, suggestions
ordered by term frequency.
All: All suggestions within maxEditDistance, suggestions ordered by edit
distance, then by term frequency.

● The Maximum edit distance parameter controls up to which edit distance
words from the dictionary should be treated as suggestions.

● The required Word frequency dictionary can either be directly loaded
from text files (LoadDictionary) or generated from a large text corpus
(CreateDictionary).

Compound aware multi-word spelling correction
LookupCompound supports compound aware automatic spelling correction of
multi-word input strings.
1. Compound splitting & decompounding

Lookup() assumes every input string as single term. LookupCompound also
supports compound splitting / decompounding with three cases:

1. mistakenly inserted space within a correct word led to two incorrect
terms

2. mistakenly omitted space between two correct words led to one
incorrect combined term

3. multiple input terms with/without spelling errors

Splitting errors, concatenation errors, substitution errors, transposition errors,
deletion errors and insertion errors can by mixed within the same word.

14

2. Automatic spelling correction

● Large document collections make manual correction infeasible and
require unsupervised, fully-automatic spelling correction.

● In conventional spelling correction of a single token, the user is
presented with multiple spelling correction suggestions.
For automatic spelling correction of long multi-word text the algorithm
itself has to make an educated choice.

Examples:

- whereis th elove hehad dated forlmuch of thepast who couqdn'tread in
sixthgrade and ins pired him

+ where is the love he had dated for much of the past who couldn't read in
sixth grade and inspired him (9 edits)

- in te dhird qarter oflast jear he hadlearned ofca sekretplan
+ in the third quarter of last year he had learned of a secret plan (9 edits)

Word Segmentation of noisy text

WordSegmentation divides a string into words by inserting missing spaces at
appropriate positions.

● Misspelled words are corrected and do not prevent segmentation.
● Existing spaces are allowed and considered for optimum segmentation.
● SymSpell.WordSegmentation uses a Triangular Matrix approach instead

of the conventional Dynamic Programming: It uses an array instead of a
dictionary for memoization, loops instead of recursion and incrementally
optimizes prefix strings instead of remainder strings.

● The Triangular Matrix approach is faster than the Dynamic Programming
approach. It has a lower memory consumption, better scaling (constant
O(1) memory consumption vs. linear O(n)) and is GC friendly.

● While each string of length n can be segmented into 2^n−1 possible
compositions,

https://en.wikipedia.org/wiki/Composition_(combinatorics)

15

SymSpell.WordSegmentation has a linear runtime O(n) to find the
optimum composition.

Examples:

- thequickbrownfoxjumpsoverthelazydog

+ the quick brown fox jumps over the lazy dog

6.1.4 Conversion of the text file to PDF
Finally, the text file is converted to a searchable pdf using the txt2pdf library.

6.2 Features chosen as Measures
6.2.1 Bert Sentence Encoder
BERT[7] stands for Bi-Directional Encoder Representational from Transformers.
For sentence encodings, we map a variable length input text to a fixed sized
dense vector. We feed in the input to the BERT, followed by a pooling layer to

16

ensure that the vector is of equal dimensions. The embeddings for the BERT
layer consists of three basic components : token, segment, and position
embeddings. The token embeddings are basically the pre-trained word
embeddings developed from a vocabulary of 30K tokens, the segment
embedding refers to the sentence number that is embedded in the vector and
the position embedding refers to the position of word within a phrase that is
encoded; as the model contains no recurrence and no convolution, for the
model to make use of the order of the sequence, it must inject some
information about the relative or absolute position of the tokens in the
sequence, that is what the "positional encodings" does. The output of the
BERT layer are the word vectors which are then passed from a Softmax
activated dense layer where loss is computed focusing mainly on the masked
tokens to raise the context analysis. This model is much better than LTSM as it
focuses on each word in parallel rather than just the forward and backward
direction of sentences and is much faster as well than LSTM.

The overall idea is that words/phrases with similar meaning lie closer to each
other in the vector space. The encoder block broadly consists of two parts :
multi-head attention mechanism and a simple position wise fully connected
feedforward mechanism; the attention component focuses on the importance
of a word in a sentence and its role in the sentence and the feed forward unit
transforms the vectors in such a format that can be processed further by the
next encoder block.

Basically, using Google’s BERT for encoding two documents into vectors and
then finding cosine similarity between two vectors.

6.2.2 Cosine [1]
In this feature, we use the technique of first converting the input paragraph
into a vector. To make this vector, we use the frequency of each word and
represent it in vector format. Thus, in this way the order of words does not
matter and just the frequency does. Then, we calculate the inner product of
these two vectors and thus, compute the similarity score.

6.2.3 Cosine [2]
In this feature the technique is the same as stated above, however the way
sentences are encoded in vectors is what makes the clear difference. First, we

17

tokenize the sentences into words and then we remove all the stop words such
as [the, a, an, he, she, etc]. Then, two vectors are formed of size equal to the
union of the token words. One vector represents one of the input and the
corresponding value to the word token is binary, either 0 or 1 depending upon
the presence of word in that input. Then, the inner product of these two
vectors is taken and the similarity score is assigned.

6.2.4 Cosine Trigram
We first remove the punctuation and the stop words of the input phrases and
compute all the possible trigram from the two phrases. Then, we calculate
term frequency, document frequency, and inverse document frequency for both
documents. Document frequency for each term was calculated by counting the
number of documents that had the given term.

The formula for Inverse Document Frequency:
IDF(t) = 1 + logN / DF(t)
Where
DF(t) : Document frequency for term t
IDF(t) : Inverse Document Frequency for term t
N: Total number of documents

Here it is to be noted that the term can be unigram, bigram or trigram. In our
case, we went with trigram to focus more on the context and ordering of
words rather than just the presence of words. Then weighted vectors are
computed using values of term frequency and inverse document frequency for
both documents. Then the dot product is calculated between TF-IDF vectors.

6.2.5 Docsim nltk
The similarity formula returns a high value when the content of the test
document is either a subset or a superset of the registered document. It works
on a set of words that are in common between test and registered documents.
The value of plagiarism is calculated using the concept of scam distance. It is a
relative measure to detect overlap, irrespective of the differences in the
document size.

The formula for so is:
S(T , R) = sum for wi belonging to C (fi(R) X fi(T)) / sum from 0 to N (fi(T) X
fi (T))
Where

18

fi(R) and fi(T) are the number of times wi occurs in registered document R
and test document T.
The above formula returns the degree to which R overlaps T, normalized with
the document T alone. The relative similarity between documents is given by
Similarity (T, R) = max (S(T, R) , S(R , T))
Where S(R, T) is the same formula just as above with reversed operands.

6.2.6 Word2Vec Spacy Embedding
Word2Vec utilizes vector representations of words, "word embeddings". Word
embedding is a popular framework to represent each word as a vector in a
vector space of many (for example 300) dimensions, based on the semantic
context in which the word is found. This technique has been used in many
machine learning and natural language processing tasks. We can compute how
close words represented by a word embedding are to each other, by
calculating the cosine similarity (direction) of these vectors. A cosine similarity
of 1 means it is the same word. A cosine similarity going towards 0 means the
words are completely different.
However plagiarisms and similarity are more about sentences and paragraphs
rather than just words. Therefore, we rather calculate the mean vectors of
sentences and compare these vectors. During testing, we noticed that a cosine
similarity > [0.85-0.90] is a rather reliable indication that sentences are very
much alike.
Continuing on this essence we built on the idea and tokenized the input into
sentences, each for which the mean vectors were computed. Then, each
pairwise combination was checked for similarity and in case it matches over a
certain threshold, then it was considered to account as a factor for the
similarity score. In this way, with the help of weights assigned to each
sentence on the basis of its length, the overall similarity score was calculated.

6.2.7 Jaccard Trigram
The approach and the calculations are the same as in the case of Cosine
Trigram. We first calculate term frequency, document frequency, and inverse
document frequency for both documents. Then weighted vectors are computed
using values of term frequency and document frequency for both documents.
Then Jaccard similarity is calculated between two weighted TF-IDF vectors.
Jaccard score is calculated by taking the intersection of the two vectors and
then dividing it by the union of these two vectors.

19

6.2.8 Longest Common Subsequence
It refers to the longest string of words that are the same between two
documents. We then normalize this value by dividing the value by the total
number of words in the answer [to be checked] document. We use the
Dynamic Programming approach to find the value of LCS for two documents.
This feature is very handy to account for actual cases of plagiarism.

6.2.9 N-gram Containment
An n-gram is a sequential word grouping. For example, in a line like "Bayes
rule gives us a way to combine prior knowledge with new information," a
1-gram is just one word, like "Bayes." A 2-gram might be "Bayes rule" and a
3-gram might be "combine prior knowledge." Containment is defined as the
intersection of the n-gram word count of a Source Text (S) with the n-gram
word count of the Student Answer Text (A) divided by the n-gram word count
of the Student Answer Text. If the two texts have no n-grams in common, the
containment will be 0, but if all their n-grams intersect then the containment
will be 1.
Here, different values of n help us in analysing the context of the inputs with
respect to each other. For example, for smaller values of n, high containment
value would indicate that the semantics are same for both the inputs and the
inputs are indicating towards the same context, however for higher values of n,
if the containment value is high, then there would be a direct case of
plagiarism.
We have experimented with different datasets over different values of n, and
understood the use cases, to use the values of n that are really helping us to
gain a deeper understanding of different types of input.

6.2.10 NLTK Phrase Toolkit
This feature[8] is a combination of two factors : semantic similarity and word
order similarity. Semantic similarity factor between two documents is
computed by calculating the cosine similarity between semantic vectors of
both the documents. These semantic vectors are formed by associating the
value of each word in a vector that is of same size for the inputs, the size is
equal to the union of words present in both the given inputs. In case the word
from the joint set is not present in the input, then the word from the input
which has the highest semantic similarity is associated as the weight of that

20

vector. This data of words and similarity is obtained from WordNet provided by
NLTK [Natural Language Toolkit].
For the word order similarity, the weight of word for one vector is featured by
its position and in case the word is not present, then the most similar word is
given importance.
Both these factors are then given weightage on a linear scale to compute for
the overall score. We experimented on what this weight should be and are
using different weights for different use cases.

6.2.11 Rabin Karp
First, we filter documents by tokenizing and removing the stopwords. Then we
calculate the hash value of each document and add it to the document type
hash table. Hash Value is calculated using the concept of rolling hash. In
rolling hash, we set the value of the rolling window for which hash values are
calculated and keep adding it to the hash table. In our case, we set the value of
the rolling window to be 3. To calculate the hash value for the next window
we remove the value of the first word in the previous window and add the
value of the last word in the current window. The formula for the rolling hash
is designed such that only similar phrases have the same values. Then we
calculate the plagiarism rate using values of hash for both the documents.
Formula for plagiarism rate = (sh / th_a)*100
Where
sh = intersecting hash values between two documents
th_a = number of hash values of document a.

6.2.12 Sequence Matcher
Sequence matcher is a tool available in the Python library ‘difflib’. It is used to
compute the longest matching character string and then give the computed
score after normalization.
For the following input :
my stackoverflow mysteries
My.st.....er......y.......
The output would be ‘Mystery’

6.2.13 Tensorflow Universal Sentence Encoder
The Universal Sentence Encoder[9] encodes text into high dimensional vectors
that can be used for text classification, semantic similarity, clustering and other
natural language tasks. The model is trained and optimized for

21

greater-than-word length text, such as sentences, phrases or short
paragraphs. It is trained on a variety of data sources and a variety of tasks with
the aim of dynamically accommodating a wide variety of natural language
understanding tasks. The input is variable length English text and the output is
a 512 dimensional vector.

There are two Universal Sentence Encoders to choose from with different
encoder architectures to achieve distinct design goals, one based on the
transformer architecture targets high accuracy at the cost of greater model
complexity and resource consumption. The other targets efficient inference
with slightly reduced accuracy by the deep averaging network(DAN)
We are using the model trained with a deep averaging network (DAN) encoder
as we have already used BERT and also, to reduce the resource consumption.
The input embeddings for words and bi-grams are first averaged together and
then passed through a feedforward deep neural network (DNN) to produce
sentence embeddings.

Both models were trained with the Stanford Natural Language Inference
(SNLI) corpus. The SNLI corpus is a collection of 570k human-written English
sentence pairs manually labeled for balanced classification with the labels
entailment, contradiction, and neutral, supporting the task of natural language
inference (NLI), also known as recognizing textual entailment (RTE).
Essentially, the models were trained to learn the semantic similarity between
the sentence pairs.
This encoder differs from the word level embedding models as it focuses on
meaning of word sequences rather than just individual words.

6.3 Checking Plagiarism for documents
6.3.1 Real Plagiarism
We worked on this aspect because of its high importance in the real world. By
real plagiarism, we are referring to the plagiarism that should be penalised, it
refers to the direct copying / no original thoughts scenarios. For this, we had to
carefully consider the features that can contribute to such a measure. After
experimenting over various datasets, we came to the conclusion that the
following features with the weights as mentioned give an accurate measure of
such plagiarism.

22

Feature Weightage [in Percentage]

Cosine[2] 5

2-gram 15

3-gram 25

4-gram 20

Docsim 5

LCS 10

Sequence Matcher 20

The results for real plagiarism on Sheffield dataset

Extent of Plagiarism Plagiarism Percentage

Cut and Paste 100

Light Revision 88.23

Heavy Revision 41.65

Non-Plagiarism 6.73

.

6.3.2 Online Plagiarism

23

This is a very important aspect of plagiarism as well. Students sometimes may
take help from the Internet to cover for their assignments, tutorials and
projects. We have followed a very systematic approach to resolve the same
and to best identify all the cases of such plagiarism.

Given an input script, first we remove the stop words from the entire script.
Then, the text is further processed by tokenizing into sentences. In case, the
number of sentences are above a certain threshold [40], then we group the
sentences into combinations of three to reduce the overall resources required
to account for the entire text. Then, these chunks of text are searched over the
web using Bing Scraper and all the top results for each chunk are then stored
in a list.

These web searches are basically nothing but the websites which have the
same context as those chunks of text. The next step is to extract the text from
all these websites using requests and bs4 libraries of Python.
Once, we have the text body of these relevant websites, then we can use the
real plagiarism detection tool that we have built to check the plagiarism of this
entire text with the text bodies obtained from these different websites.
Thus, we have been able to check the plagiarism of the given input across the
web[Internet] by first identifying the possible sources and then checking each
one, one by one systematically.

Results :

❖ We obtained 100 percent plagiarism with Wikipedia in an article of Dr.
APJ Abdul Kalam picked up from wikipedia

24

❖ Results for plagiarism with various websites for light revision data of the
University of Sheffield are shown below. As it can be seen, we have got
15 percent plagiarism from wikipedia article, 82 percent plagiarism from
a Gabormelli article and so on.

6.3.3 Data Processing [for Further Work]
Owing to the fact that we have used multiple datasets, how we have used the
data to modify to a certain format for the ease of model training and testing is
a very important aspect of the project. We have used csv format to process the
data to process the data systematically and have used Pandas library to make
the necessary changes. At the end, there is a single .csv file which has names
of all the input text and output text, with their respective file names linked
with the class data [similarity scale], datatype label and the same source name
and answer file name to avoid any unnecessary confusion.

Such format has been maintained by us in case of large uniform datasets such
as STS benchmark dataset, SICK dataset and MSRPC dataset.
Further, to work on this dataset, it can easily be done by working on one row at
a time and using several in-built functions in CSV and Pandas libraries.

25

6.3.4 Semantic Plagiarism
We tried two different models

6.3.4.1 Binary Classification

6.3.4.1.1 Dataset1

We used two datasets for training and testing our model. We used the MSRPC
dataset[1] and the University of Sheffield dataset[4]. Every text file is compared
with the source file and is classified whether it is plagiarized or not. The given
data is divided into test and training datasets and further processing is done.
We also used this model on our AI dataset.

26

6.3.4.1.2 Model

We are using a binary classification model designed using PyTorch. The input
to the model is the similarity features that we are using to measure similarity
among documents and output is a single sigmoid value that is rounded to the
label 0 or 1, classifying the plagiarism. 1 here indicates that the document is
plagiarized while 0 indicates it is not plagiarized. We tried the different
combinations of nodes in hidden layers and got results respectively. Results
are shown in the table below for different trials in the model. Dropout was set
at 0.2. The learning rate was set at 0.001.

Rectified Linear Unit(ReLU) is being used as the activation function. It is a
piecewise linear function that will output the input directly if positive else it
will output zero.

Adam[10] was used as the optimizer. It is an optimization algorithm and can be
used instead of stochastic gradient descent to update network weights on
basis of training data. The name Adam[10] is derived from adaptive moment
association. Adam[10] is different from classical stochastic gradient
descent(SGD)[12]. In the case of stochastic gradient descent, it maintains a
single learning rate for all weight updates and maintains the same learning
rate throughout the training. While in the case of Adam[10] learning rate is
maintained for each network weight and is adapted separately as the model
learns. Adam[10] can be defined as combining the advantages of two other
extensions of stochastic gradient descent which are:

Adaptive Gradient Algorithm: this maintains a per-parameter learning rate
and improves performance on problems with sparse gradients, for example,
natural language and computer vision.

Root Mean Square Propagation: this also maintains a per-parameter learning
rate that adapts on basis of the average of recent magnitudes of the gradients
for the weight

Instead of adapting the parameter learning rates on the basis of the average
first moment (the mean) as in the case of RMSProp, Adam[10] also makes use of
the average of the second moments of the gradients (the uncentered variance).

27

The algorithm calculates an exponential moving average of the gradient and
the squared gradient, and the parameters beta1 and beta2 control the decay
rates of these moving averages. The initial value of the moving averages and
beta1 and beta2 values close to 1.0 (recommended) result in a bias of moment
estimates towards zero. This bias is overcome by first calculating the biased
estimates before then calculating bias-corrected estimates.

Binary Cross-Entropy loss (BCELoss) was used as the loss function. It is the
default function to use in the case of binary classification. The Cross-entropy
will calculate a score that summarizes the average difference between the
actual and predicted probability distributions for predicting class 1. The score
is minimized and a perfect cross-entropy value is 0.

6.3.4.2 Documents Similarity

6.3.4.2.1 Data

Every text file is compared with the source file and is given a score on a scale
of 1 to 5 for the similarity between the two files. We trained and tested our
model on the SICK dataset[2] and obtained pretty good results. The given data
is divided into test and training datasets in a ratio of 20:80 and further
processing is done.

6.3.4.2.2 Model

We are using a regression model designed using PyTorch. The input to the
model is the similarity features that we are using to measure similarity among
documents and output is a single value on a scale of 1 to 5 indicating the
similarity between documents. We tried different numbers of nodes in hidden
layers and got results respectively. Results are shown in the table below for
different trials in the model. The learning rate was set at 0.005.

Sigmoid is being used as the activation function. The input to the function is
transformed into a value between 0.0 and 1.0. Inputs that are much larger than
1.0 are transformed to the value 1.0, similarly, values much smaller than 0.0
are snapped to 0.0

28

Stochastic Gradient Descent was used as the optimizer. Gradient Descent[12]

is an algorithm that is used to find the value of parameters of a function to
minimize the cost function. The aim of the algorithm is to try different values
for coefficients and evaluate the cost and select those coefficients which lower
the value of cost. After certain repetitions, we will get the best value of
coefficients for which the value of cost will be the lowest. The process starts
by assigning a small random value to coefficients and then the value of cost is
calculated by substituting the value of the coefficient. Then derivative of the
cost function is taken. We need to know the slope so that we can move
coefficient values in a certain direction so that we get lower costs in the next
iteration. The process is repeated until the value of the cost function is close to
zero. The learning rate is also specified to control the change in coefficient
values in each update.

Gradient Descent[12] can take a lot of time to run on very large datasets.
Because gradient descent algorithm requires prediction for every instance of
training dataset and there can be millions of instances. In the case of a large
amount of data, we can use stochastic gradient Descent[12] a variation of
gradient descent. In this case, the update is made in the value of coefficient
after each training instance rather than after each batch. The first step is to
randomize the order of the training dataset. This is to mix the order in which
the updates are made to coefficients. As the coefficients are updated after
every training instance the updates will be noisy and jumping. So by mixing
the order of updates to the coefficients it harnesses this random walk and
avoids it from getting distracted or stuck. The learning is much faster with
stochastic gradient descent for a large training dataset.

MSE (MSELoss) was used as loss function. MSELoss is mainly used for
regression problems. Mean squared error is computed by taking the average of
the squared differences between the predicted and actual value. The obtained
result is always positive irrespective of the sign of predicted and actual value.
The squaring indicates that larger mistakes result in more error than smaller
mistakes and thus model gets punished more for larger mistakes.

29

6.3.5 Text Entailment

6.3.4.1 Data
Every text file is compared with the source file and is classified in to three
different classes “Contradiction”, ”Entailment”, and “Neutral”, depending on
two files. We trained and tested our model on the SICK[2] dataset and obtained
pretty good results. The given data is divided into test and training datasets
and further processing is done.

6.3.4.2 Model
We are using the Multiclass Classification Model[15] defined using Keras. The
input to the model is the similarity features that we are using to measure
similarity among documents and output is a single class of the three classes
“Contradiction”, ”Entailment”, ”Neutral” indicating the text entailment between
documents. We tried different numbers of nodes in hidden layers and got
results respectively. Results are shown in the table below for different trials in
the model. The output layer has three nodes which is equal to number of
classes.

Rectified Linear Unit(ReLU) is being used as the activation function in the
hidden layer. It is a piecewise linear function that will output the input directly
if positive else it will output zero.

Softmax is being used as the activation function in the output layer. The
softmax[10] function is used as the activation function in the output layer of
neural network models that predict a multinomial probability distribution. That
is, softmax is used as the activation function for multi-class classification
problems where class membership is required on more than two class labels.
The softmax activation will output one value for each node in the output layer.
The output values will represent probabilities and the values sum to 1.0.

Adam[13] was used as the optimizer.

Categorical Cross Entropy was used as the loss function. It is the default loss
function to use in the case of the multiclass classification problem. Categorical
Cross-entropy will calculate a score that summarizes the average difference

30

between the actual and predicted probability distributions for all classes in the
problem. The score is minimized and a perfect cross-entropy value is 0. This
function requires that the output layer is configured with n nodes, one for each
class and a ‘softmax’ activation function to predict the probability of each class.

Entailment Analysis:
Text 1 : A man with a jersey is dunking the ball at a basketball game

Text 2 : The ball is being dunked by a man with a jersey at a basketball game

Entailment Analysis Result : Entailment

Text 3 : Two children are lying in the snow and are making snow angels

Text 4 : There is no child lying in the snow and making snow angels

Entailment Analysis Result : Contradiction

7 Website Integration
❖ We built a compact and user friendly website for easy testing and for

convenience of users.

❖ We have used HTML, CSS, and React Framework for the Front End part

❖ We have used Flask for the backend part

❖ We made a request to Flask instance to get the results by running the

Python script in the background and then getting the results and

displaying them on the screen.

31

32

8 User Guidelines
The user must submit all the documents in the respective folders according to
the formats. Then, the documents should be converted in a single format after
running the respective codes required to change the formats.

Then run the python scripts for online plagiarism detection, in between
plagiarism detection, and semantic similarity analysis, and textual entailment
analysis on the documents as needed.

33

9 Future Prospects
❖ Clustering of documents to reduce the total number of pairs required to

be checked for similarity/plagiarism detection by large numbers

❖ Embedding a knowledge graph for enhanced idea-plagiarism checking

❖ Automatic Grading of answer scripts

❖ More features integrated website and mobile application

10 Result
❖ The binary classification model achieved an accuracy of 78.2%
❖ The Mean Square Error for the regression model was 0.315
❖ The multiclass classification model achieved an accuracy of 82.4%

11 Techstack
❖ Programming languages : Python
❖ DL libraries : Tensorflow, Keras, Pytorch
❖ Text Correction libraries: TextBlob, Pyspellchecker, Symspell
❖ Text Extraction : Microsoft Computer Vision API
❖ PDF to text Conversion Work : pdfplumber, pdf2image
❖ Frontend : HTML, CSS , ReactJS
❖ Backend : Flask

12 Demo and Github Link
Demo Video Link :

https://drive.google.com/drive/folders/1MAr1qtvh_NnigaQ2oUsfLvLEE7u_ad19
?usp=sharing

https://drive.google.com/drive/folders/1MAr1qtvh_NnigaQ2oUsfLvLEE7u_ad19?usp=sharing
https://drive.google.com/drive/folders/1MAr1qtvh_NnigaQ2oUsfLvLEE7u_ad19?usp=sharing

34

Github Codebase Link :

https://github.com/vyaskartik20/Semantic_Plagiarism_Checker_for_Handwritte
n_Scripts

13 Conclusion
We were successfully able to extract text from scanned handwritten
documents using Microsoft Computer Vision API[1] and further improved
obtained text using Textblob, Pyspellchecker, and Symspell[7] library. Next, we
developed different similarity features to calculate the similarity between
documents. We designed three different models, binary classification model,
regression model, and multiclass classification model. We trained these
models on MSRPC[3], SICK[4], and STS[6] datasets and obtained great results.
We were able to predict similarity on a binary basis using the binary
classification model also we were able to predict similarity on a scale of 1-5
using the regression model.

We were also able to predict text entailment using a multiclass classification
model. We also developed a real plagiarism detection tool that indicates actual
copying between documents. We also developed a tool to detect pages on the
web from where documents were plagiarized. In the end, we also developed a
website where all these features can be used in one place and
similarity/plagiarism can be calculated between documents.

14 Acknowledgments
We are heartily thankful to our instructors, Dr. Romi Banerjee and Dr. Debarati
Bhunia Chakraborty, for providing us the necessary guidance, the needed
constant support, and helping us throughout the course of the project via
continuous interaction and evaluation of the course at regular intervals.

https://github.com/vyaskartik20/Semantic_Plagiarism_Checker_for_Handwritten_Scripts
https://github.com/vyaskartik20/Semantic_Plagiarism_Checker_for_Handwritten_Scripts

35

15 References
1) MSRPC dataset
2) SICK dataset
3) STS dataset
4) University of Sheffield Dataset
5) Microsoft Computer Vision API
6) Symspell
7) BERT sentence Encoder
8) NLTK Toolkit
9) Universal Sentence Encoder | TensorFlow Hub
10) Adam
11) Regression
12) Stochastic Gradient Descent
13) How to choose loss functions
14) Developing-a-corpus-of-plagiarised-short-answers.pdf
15) Multi-Class Classification
16) How to Develop Deep Learning Models
17) Softmax Activation Function.
18) Academic Plagiarism Detection

https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://zenodo.org/record/2787612#.YHk4nugzZPa
http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
https://ir.shef.ac.uk/cloughie/resources/plagiarism_corpus.html
https://azure.microsoft.com/en-in/services/cognitive-services/custom-vision-service/
https://github.com/wolfgarbe/SymSpell
https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/?utm_source=blog&utm_medium=top_5_sentence_embedding
https://github.com/sujitpal/nltk-examples
https://tfhub.dev/google/universal-sentence-encoder/1
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/#:~:text=Adam%20is%20a%20replacement%20optimization,sparse%20gradients%20on%20noisy%20problems.
https://towardsdatascience.com/regression-explained-in-simple-terms-dccbcad96f61
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c412841_developing-a-corpus-of-plagiarised-short-answers/developing-a-corpus-of-plagiarised-short-answers.pdf
https://machinelearningmastery.com/multi-class-classification-tutorial-keras-deep-learning-library/
https://machinelearningmastery.com/pytorch-tutorial-develop-deep-learning-models/
https://machinelearningmastery.com/softmax-activation-function-with-python/#:~:text=The%20softmax%20function%20is%20used%20as%20the%20activation%20function%20in,predict%20a%20multinomial%20probability%20distribution.&text=By%20definition%2C%20the%20softmax%20activation,node%20in%20the%20output%20layer
https://dl.acm.org/doi/fullHtml/10.1145/3345317

